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Abstract

Previous investigations in our laboratory have found that the stimulus effects of the hallucinogenic serotonergic agonists DOM and LSD

are potentiated by phencyclidine [PCP], a non-competitive NMDA antagonist. Also suggestive of behaviorally significant serotonergic/

glutamatergic interactions is our finding that stimulus control by both PCP and LSD is partially antagonized by the mGlu2/3 agonist, LY

379268. These observations coupled with the fact that the stimulus effects of LSD and DOM are potentiated by selective serotonin reuptake

inhibitors [SSRIs] led us in the present investigation to test the hypothesis that stimulus control by PCP is potentiated by the SSRI,

citalopram. Stimulus control was established with PCP [3.0 mg/kg; 30 min pretreatment time] in a group of 12 rats. A two-lever, fixed ratio

10, positively reinforced task with saline controls was employed. Potentiation by citalopram of an intermediate dose of PCP was observed. In

an attempt to establish the mechanism by which citalopram might interact with PCP, subsequent experiments examined the effects on that

interaction of antagonists at serotonergic receptors. It was found that the selective 5-HT2C-selective antagonists, SDZ SER 082 and SB

242084, significantly, albeit only partially, blocked the effects of citalopram on PCP. In agreement with our previous conclusions regarding

the interaction of citalopram with DOM, the present data suggest that potentiation of the stimulus effects of PCP by citalopram are mediated

in part by agonist activity at 5-HT2C receptors.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Previous studies in our laboratory have found that the

stimulus effects in rats of both indoleamine and phenethyl-

amine hallucinogens are augmented by the co-administra-

tion of the selective serotonin reuptake inhibitors fluoxetine,

fluvoxamine, and venlafaxine [SSRIs] (Fiorella et al., 1996;

Winter et al., 1999a, 2002). These findings are in general

agreement with an anecdotal report of an increase in the

effects of lysergic acid diethylamide [LSD] in an individual

who co-administered fluoxetine in an attempt to augment

the LSD experience (Bonson and Murphy, 1996) and of

LSD flashbacks in persons with a history of LSD abuse
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subsequently treated with SSRIs (Markel et al., 1994).

Interpretation of the animal data is confounded by the fact

that SSRIs may partially mimic the stimulus effects of the

phenethylamine hallucinogen, [�]-2,5-dimethoxy-4-methyl-

amphetamine [DOM] (Winter et al., 1999b) or may inhibit

the metabolism of DOM (Eckler et al., 2002). However,

these interpretational problems are largely overcome by the

use of citalopram, an SSRI which appears to be truly

selective for the serotonin transporter (Bymaster et al., 2002;

Hyttel, 1994; Milne and Goa, 1991) and which neither

mimics the stimulus effects of DOM nor alters its

metabolism (Eckler et al., 2002).

On the basis of reports that phencyclidine [PCP] and

dizocilpine, non-competitive antagonists of the NMDA

subtype of ionotropic glutamate receptors, increase seroto-

nin levels in rat brain (Yan et al., 1997; Martin et al., 1998)
ehavior 81 (2005) 694 – 700



J.C. Winter et al. / Pharmacology, Biochemistry and Behavior 81 (2005) 694–700 695
we reasoned that NMDA antagonists might potentiate the

stimulus effects of hallucinogens in a fashion similar to that

of the SSRIs. Indeed, it subsequently was found that

stimulus control by both DOM (Winter et al., 2000a) and

LSD (Winter et al., 2004) is potentiated by PCP. Thus

having observed potentiation of serotonergic hallucinogens

by serotonergic agents, the SSRIs, and by an NMDA

antagonist, PCP, the present investigation tested the sym-

metry of these serotonergic/glutamatergic interactions by

examining the effects of citalopram in rats trained with PCP

as a discriminative stimulus. Furthermore, on the basis of a

previous investigation which concluded that the effects of

citalopram on stimulus control by DOM are partially

mediated by 5-HT2C receptors (Eckler et al., 2004), we

tested the effects of selective serotonergic antagonists.
2. Materials and methods

2.1. Subjects

A group of 12 male Fischer 344 rats was obtained at an

age of approximately 6 weeks from Harlan Sprague–

Dawley Inc. [Indianapolis, IN, U.S.A.], housed in pairs

under a 12-h light–dark cycle beginning at 6:00 a.m., and

allowed free access to water in their home cages. All

training and testing took place during the light cycle. Caloric

intake was controlled to maintain a mean body weight of

approximately 275 g. Subjects were fed standard rat chow

following experimental sessions. Caloric control has been

shown to lengthen the life span and decrease the incidence

of a variety of pathologies in Fischer 344 rats (Keenan et al.,

1994). Based on a recent sample of 25 rats, the average life

span under these conditions is 34.3 months [S.E.M.=1.1].

Animals used in these studies were maintained in accord-

ance with U.S. Public Health Service Policy on Humane

Care and Use of Laboratory Animals as amended August

2002. All experimental protocols were approved by the

Institutional Animal Care and Use Committee of the

University at Buffalo.

2.2. Discrimination training

Six small animal test chambers [MED Associates ENV-

008] were used for all experiments. These were housed in

larger light-proof, sound-insulated boxes which contained a

house light and an exhaust fan. Chambers contained two

levers mounted at opposite ends of one wall. Centered

between the levers was a dipper which delivered 0.1 ml of

sweetened condensed milk diluted 2:1 with tap water.

Sessions were managed by a micro-computer using operant

control software [MED-PC State Notation, Version IV].

After learning to drink from the dipper, rats were trained

to press first one and then the other of the two levers. The

number of responses for each reinforcement was gradually

increased from 1 to 10. During this time, the reinforced
lever was alternated on a random basis. All subsequent

training and testing sessions used a fixed-ratio 10 [FR10]

schedule of reinforcement. Discrimination training was then

begun. Subjects were trained to discriminate PCP [3.0 mg/

kg, 30 min pretreatment time, IP; N =12] from saline as

described previously (Hirschhorn and Winter, 1971; Fiorella

et al., 1995a). Following the administration of PCP, every

tenth response on the PCP-appropriate lever was reinforced.

Similarly, responses on the saline-appropriate lever were

reinforced on a FR10 schedule following the injection of

saline. For half of the subjects, the left lever was designated

as the PCP-appropriate lever. During discrimination train-

ing, PCP and saline were alternated on a daily basis. PCP-

induced stimulus control was assumed to be present when,

in five consecutive sessions, 83% or more of all responses

prior to the delivery of the first reinforcer were on the

appropriate lever, i.e., no more than 2 incorrect responses

prior to completion of the FR10 on the correct lever.

2.3. Test procedures

After stimulus control with PCP was well established,

tests of generalization were conducted once per week in

each animal. Tests were balanced between subjects trained

on the previous day with saline and PCP, respectively.

During test sessions, no responses were reinforced and the

session was terminated after the emission of 10 responses on

either lever. The distribution of responses between the two

levers was expressed as the percentage of total responses

emitted on the drug-appropriate lever. Response rate was

calculated for each session by dividing total number of

responses emitted prior to lever selection, that is, prior to the

emission of 10 responses on either lever, by elapsed time.

Data for any subjects failing to emit 10 responses within the

constraints of the 10-min test session were not considered in

the calculation of the percent drug-appropriate responding

but were included in the analysis of response rates. For

purposes of discussion of these data, an intermediate degree

of generalization or antagonism is defined as being present

when the mean response distribution after a test drug or

combination of drugs is less than 80% drug-appropriate and

is statistically significantly different from the results

following both training conditions.

The effects of citalopram on PCP-induced stimulus

control were assessed by co-administration of citalopram

[3.0 mg/kg, 90 min pretreatment] and PCP [30 min before

testing]. The interactions of serotonergic antagonists with

the effects of citalopram on PCP-induced stimulus control

were assessed in experiments in which the antagonists were

administered in combination with citalopram and PCP.

2.4. Drugs

The following drugs were generously provided by the

organizations indicated: PCP HCl [National Institute on

Drug Abuse, Rockville, MD, USA], racemic citalopram



dose of PCP [mg/kg]

%
 P

C
P

-a
pp

ro
pr

ia
te

 r
es

po
nd

in
g

0

10

20

30

40

50

60

70

80

90

100

dose of PCP [mg/kg]

ra
te

 o
f r

es
po

nd
in

g

0

5

10

15

20

25

30

//
0.0 0.3 0.6 1.0 3.0

//
0.0 0.3 0.6 1.0 3.0

*

*

Fig. 1. Dose–response relationship for PCP alone and in combination with

citalopram. (?) Effects of PCP alone in rats trained with PCP as a

discriminative stimulus [3.0 mg/kg; 30 min pretreatment time]. (h) Effects
of PCP in combination with citalopram [3.0 mg/kg; 90 min pretreatment

time]. Each point represents the mean of one determination in each of 10

rats with the exception of the training dose where the mean of 4

determinations in each of the subjects is shown. Standard errors of the

means are indicated. *Statistically significant difference between PCP alone

and in combination with citalopram. The point at a dose of 0.0 is for

citalopram alone. Ordinate: Upper panel: percent PCP-appropriate

responding. Lower panel: rate expressed as responses per minute. Abscissa:

dose plotted on a log scale.
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hydrobromide [H. Lundbeck A/S, Copenhagen, Denmark],

SB 242084 [GlaxoSmithKline, Great Britain]. The follow-

ing were purchased from the commercial sources indicated:

m-chlorophenylpiperazine [mCPP] and pirenperone [Sigma-

Aldrich USA], SDZ SER 082 and WAY-100635 [Tocris,

USA]. A stock solution of pirenperone [1 mg/ml] was made

in a minimal volume of a 45% w/v aqueous solution of 2-

hydroxy-propyl-h-cyclodextrin and solutions for injection

were made by diluting the stock with sterile 0.9% NaCl.

M100907 was synthesized at the Laboratory of Medicinal

Chemistry, National Institute of Diabetes, Digestive and

Kidney Disorders at the National Institutes of Health

[Bethesda, MD]. A stock solution of M100907 [0.5 mg/

ml] was made by dissolving M100907 in a minimal volume

of 0.2% w/v tartaric acid and diluting with water. All other

drugs were dissolved in 0.9% saline. Doses are expressed as

mg/kg of the salts. The IP route was employed for all drugs

with the exception of WAY-100635 which was administered

SC. An injection volume of 1 ml/kg body weight was

employed for all drugs.

2.5. Statistical analysis

The statistical significance of the interaction between

citalopram and the stimulus effects of PCP was determined

using 2-way repeated measures ANOVA with dose of PCP

and treatment with citalopram as factors. For assessment of

the statistical significance of antagonism by various drugs of

the potentiation of PCP by citalopram, 1-way repeated

measures ANOVA compared the results of PCP alone,

PCP+citalopram, and PCP+citalopram+antagonist. Pair-

wise comparisons following ANOVA were made using the

Holm–Sidak method. Differences were considered to be

statistically significant if the probability of their having

arisen by chance was <0.05. All analyses were conducted

using SigmaStat 3.0 for Windowsi [Jandel Scientific

Software, San Rafael, CA]. Control data were repeated for

each comparison and statistical analyses were applied using

the appropriate control sessions. However, for purposes of

clarity, mean values for control data are shown in all figures.
3. Results

3.1. Potentiation of PCP by citalopram

Preliminary experiments examined the time course of

interaction of citalopram [3 mg/kg] with an intermediate

dose of PCP [1.0 mg/kg]. Although the stimulus effects of

PCP were enhanced using pretreatment times as brief as 15

min, maximum enhancement occurred using a pretreatment

time of 90 min and all subsequent experiments used that

pretreatment time.

Fig. 1 shows an orderly dose-related increase in PCP-

appropriate responding in rats trained and tested with PCP.

When the same doses were tested in rats pre-treated with a
fixed dose of citalopram, PCP-appropriate responding

increased for all doses of PCP less than the training dose.

For PCP doses of 0.6 and 1.0 mg/kg, two-way repeated

measures ANOVA revealed a significant increase in PCP-

appropriate responding following the combination of cita-

lopram and PCP compared with PCP alone [F(1,9)=59.31;

p =0.001]. Response rates were not altered by pretreatment

with citalopram.

3.2. Antagonism of the potentiation of PCP by citalopram

In Fig. 2 are shown the results of tests of interactions

between a series of serotonergic antagonists in combination

with an intermediate dose of PCP [1.0 mg/kg] following

pretreatment with citalopram. It is seen that the selective 5-

HT2A antagonist, M100907, the non-selective 5-HT2 recep-

tor antagonist, pirenperone, and the selective HT1A receptor

antagonist, WAY-100635, do not block the potentiation of

the stimulus effects of PCP by citalopram. In contrast, the

selective 5-HT2C receptor antagonist, SDZ SER 082, at
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Fig. 2. The effects of selected serotonergic antagonists on the potentiation

of the stimulus effects of PCP [1.0 mg/kg; 30 min pretreatment time]

following the administration of citalopram [3.0 mg/kg; 90 min pretreatment

time]. The point indicated by P on the abscissa is for PCP [1.0 mg/kg]

alone. The point indicated by P+C on the abscissa is for the combination of

PCP and citalopram. Other points shows the effects of P+C in combination

with the 5-HT2A antagonist, M100907 [r], the 5-HT2 antagonist, piren-

perone [0], the 5-HT1A antagonist, WAY-100635 [ ], and the 5-HT2C

antagonists, SDZ SER 082 [?] and SB 242084 [h], respectively. All points
represent the mean of one determination in each of 10 rats. An asterisk

indicates a statistically significant difference between P+C alone and in

combination with an antagonist. A numeral adjacent to a point indicates the

number of subjects completing the test if other than 10. Ordinate: Upper

panel: percent PCP-appropriate responding. Lower panel: rate expressed as

responses per minute. Abscissa: dose plotted on a log scale.
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doses of 0.3 and 1.0 mg/kg antagonized the interaction of

citalopram with PCP [F(2,9)=22.040, P <0.001; F(2,9)=

20.689, P <0.001, respectively]. Likewise, the selective 5-

HT2C receptor antagonist, SB 242084, at a dose of 2.0 mg/kg

significantly decreased the interaction between PCP and

citalopram [F(2,9)=30.899, P <0.001]. Subsequent pair-

wise comparisons revealed significant differences between

PCP [1.0 mg/kg] alone, PCP+citalopram, and PCP+citalo-

pram+antagonist thus meeting our criteria for intermediate

antagonism. In separate experiments, no statistically signifi-

cant antagonism of the training dose of PCP was observed in

the presence of M100907, pirenperone, WAY-100635, SDZ

SER 082, or SB 242084 [data not shown].

3.3. Interaction of the non-selective 5-HT2C receptor

agonist, mCPP, with PCP

Based upon the results seen in Fig. 2 with selective

antagonists at 5-HT2C receptors, we examined the effect of a

non-selective 5-HT2C receptor agonist, meta-chlorophenyl-
piperazine [mCPP] (Callahan and Cunningham, 1994;

Fiorella et al., 1995b; Pauwels et al., 2003), on the stimulus

effects of an intermediate dose of PCP. For doses of PCP

and mCPP of 1.0 and 0.3 mg/kg, respectively, repeated

measures ANOVA revealed a significant increase in PCP-

appropriate responding following the combination of mCPP

and PCP compared with PCP alone [N =6; F(2,5)=11.077;

P=0.003].
4. Discussion

We previously provided evidence that stimulus control

by LSD and by DOM is enhanced both by SSRIs (Fiorella et

al., 1996; Winter et al., 1999a, 2002) and by non-

competitive NMDA antagonists including PCP (Winter et

al., 2000a). The latter observation of behaviorally signifi-

cant serotonergic/glutamatergic interactions is extended by

the present data (Fig. 1) to include potentiation of PCP-

induced stimulus control by the SSRI, citalopram. Because

citalopram is selective for the serotonin transporter (Millan

et al., 2000), we may rule out a direct role for increased

levels of either dopamine or norepinephrine. However, in as

much as citalopram would be expected to increase levels of

serotonin at all serotonin receptors, the data provided in Fig.

1 do not define the specific receptor or receptors involved.

Of the 14 serotonin receptors now recognized (Hoyer et al.,

2002), we chose to examine 5-HT1A, 5-HT2A, and 5-HT2C

because each may play a role in glutamate release, one of

the proposed mechanisms by which not only PCP but also

LSD and the phenethylamine hallucinogens exert their

behavioral effects (Aghajanian and Marek, 1999, 2000;

Winter et al., 2004).

A functionally significant role for activation or antago-

nism of 5-HT1A receptors in the effects of citalopram as well

as non-competitive NMDA antagonists is suggested by

several studies. The selective 5-HT1A-selective antagonists

WAY-100135 and WAY-100635 antagonize citalopram-

induced hypothermia (Oerther and Ahlenius, 2001) and

certain of the behavioral effects of the non-competitive

NMDA antagonist, dizocilpine [MK-801] (Loscher and

Honack, 1993; Wedzony et al., 2000). In addition,

dizocilpine increases the number of 5-HT1A receptors in

rat brain (Wedzony et al., 1997) and Czyrak et al. (2003)

have identified 5-HT1A receptors in the rat cingulate cortex

which they believe may regulate glutamate release. How-

ever, it is seen in Fig. 2 that the selective 5-HT1A antagonist,

WAY-100635, does not alter the potentiating effects of

citalopram. The dose chosen, 0.3 mg/kg, was previously

shown in our laboratory to fully block the effects of the 5-

HT1A agonist, 8-hydroxy-2-dipropylaminotetralin [8-OH-

DPAT] (Winter et al., 2000b). The absence of an effect of

WAY-100635 on the potentiation of PCP by citalopram is in

keeping with our previous observation that WAY-100635

does not alter the effects of citalopram on stimulus control

by DOM (Eckler et al., 2004).
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It has long been recognized that the stimulus effects of

both indoleamine and phenethylamine hallucinogens are

mediated by serotonergic receptors (Browne and Ho, 1975;

Winter, 1975, 1978) specifically those of the 5-HT2 subtype

(Glennon et al., 1983, 1984; Fiorella et al., 1995a) and that

PCP acts via blockade of NMDA receptors (Anis et al.,

1983; Zukin and Zukin, 1979; Koek, 1999). In a most

provocative hypothesis, Aghajanian and Marek (1999,

2000) proposed on the basis of electrophysiological

evidence that release of glutamate represents a final

common pathway for hallucinogens whose direct effects

are on either NMDA or serotonergic receptors. We have

recently provided direct support for this hypothesis by

demonstrating that LSD-induced stimulus control is poten-

tiated by a glutamate releaser, LY 341495, and partially

antagonized by LY 379268, an mGlu2/3 agonist which

inhibits glutamate release (Winter et al., 2004). In addition,

it has recently been shown using in vivo microdialysis that

LSD as well as the phenethylamine hallucinogens, 2,5-

dimethoxy-4-methylamphetamine [DOM] and 2,5-dime-

thoxy-4-iodoamphetamine [DOI], increase extracellular

glutamate in rat brain (Scruggs et al., 2003; Muschamp et

al., 2004). Moghaddam and Adams (1998) observed similar

increases in serotonin levels in rat brain following systemic

treatment with PCP. Because LSD-induced release of

glutamate is antagonized by the selective 5-HT2A antago-

nist, M100907 (Muschamp et al., 2004), we tested the

hypothesis that citalopram potentiates the stimulus effects of

PCP via agonism at 5-HT2A receptors. However, neither

M100907 nor pirenperone diminished the effect of citalo-

pram on stimulus control by PCP (Fig. 2) It should be noted

that the doses of pirenperone [0.16 mg/kg] and M100907

[0.05 mg/kg] used in the present study have previously been

found to antagonize completely the stimulus effects of LSD

in Fischer 344 rats (Winter and Rabin, 1988; Winter et al.,

2004). A puzzling aspect of the interaction between the

combination of PCP and citalopram and the 5-HT2 receptor

antagonists, M100907 and pirenperone, is the rate decreas-

ing effect seen in Fig. 2; indeed, following pirenperone,

only 2 of 10 subjects completed the interaction tests.

Previously we observed similar rate-suppressing effects of

pirenperone in combination with agents presumed to act as

agonists at 5-HT1A receptors (Winter and Rabin, 1988).

Although we are unaware of definitive behavioral data with

respect to the selectivity of pirenperone for 5-HT2 receptor

subtypes, in vitro second messenger studies suggest a 250-

fold higher affinity for the 5-HT2A subtype as compared

with the 5-HT2C subtype (Hoyer et al., 1994).

Abundant evidence suggests that serotonin plays a

significant role in glutamate release or glutamatergic func-

tions and most studies implicate the 5-HT2A receptor

(Arvanov et al., 1999; Meller et al., 2002; Regina et al.,

2004). However, the fact that there is a highly significant

correlation between agonist activity at 5-HT2A and 5-HT2C

receptors (Nichols, 2004) has made difficult an assessment of

the part played by the latter receptor. Nonetheless, glutamate
release by serotonergic agonists such as LSD or DOI is fully

blocked by M100907 (Scruggs et al., 2003; Muschamp et al.,

2004) and, in those studies in which selective 5-HT2C

antagonists have been employed, negative results have been

obtained (Marcoli et al., 2001; Martin-Ruiz et al., 2001;

Dawson et al., 2002; Pei et al., 2004). Despite these caveats, a

prominent role for 5-HT2C receptors in the actions of

citalopram is suggested by the studies of Millan and his

colleagues (Millan et al., 1999; Dekeyne et al., 2001) in

which citalopram was trained as a discriminative stimulus in

the rat. Citalopram generalized to the selective 5-HT2C

agonist, Ro 60-0175, and was blocked by the selective 5-

HT2C antagonist, SB 242084 (Kennett et al., 1997).

Furthermore, previous work in our laboratory provided

evidence that sensitization to the stimulus effects of LSD

following serotonin depletion in the rat is accompanied by

upregulation of the 5-HT2C receptor (Fiorella et al., 1995c). In

addition, we previously observed that SB 242084 signifi-

cantly but incompletely blocks augmentation of the stimulus

effects of DOM by citalopram (Eckler et al., 2004). For these

reasons, we examined SB 242084 (Kennett et al., 1997) and

SDZ SER 082 (Nozulak et al., 1995) in combination with

citalopram and PCP (Fig. 2). The results obtained strongly

suggest that, indeed, the 5-HT2C receptor is a significant

factor in the effects of citalopram on DOM. However, the fact

that antagonism by both drugs was intermediate in nature,

i.e., statistically significant but less than complete, leaves

open the possibility that other factors are involved. A further

test of the importance of actions at the 5-HT2C receptor would

be a demonstration that agonists at 5-HT2C receptors

potentiate the stimulus effects of PCP. To that end, we

examined the interaction with PCP of the 5-HT2C/2B agonist,

mCPP and significant potentiation of an intermediate dose of

PCP was observed. Unfortunately, the more selective 5-HT2C

receptor agonist, Ro 60-0175, used by Millan et al. (1999) to

characterize the stimulus effects of citalopram was not

available to us due to institutional constraints. Nonetheless,

the observed effects of mCPP on PCP-induced stimulus

control together with the observation that potentiation of PCP

by citalopram is significantly antagonized by SB 242084 and

by SDZ SER 082 support the hypothesis that citalopram acts

to potentiate stimulus control by DOM via a 5-HT2C-

mediated mechanism.

It should be noted that a racemic mixture of citalopram

was employed in the present studies. In future investigations

it would be well to examine the respective contributions of

the [R]- and [S]-isomers of citalopram. Recent evidence

suggests that the [S]-isomer [escitalopram] is the more

active of the two (Hyttel et al., 1992) and that, indeed, [R]-

citalopram may antagonize certain of the effects of

escitalopram (Mork et al., 2003; Sanchez, 2003; Fish et

al., 2004). In our previous studies of the potentiation of the

phenethylamine hallucinogen, DOM, by citalopram (Eckler

et al., 2002), pharmacokinetic factors were ruled out by the

measurement of DOM levels in the brain. Although

citalopram is believed to interact minimally with cyto-



J.C. Winter et al. / Pharmacology, Biochemistry and Behavior 81 (2005) 694–700 699
chrome P450 [CYP] enzymes (for reviews, see Brosen and

Naranjo, 2001; Spina et al., 2003), the fact that PCP is

metabolized by CYP enzymes (Laurenzana and Owens,

1997) makes plausible a pharmacokinetic contribution to the

present behavioral interaction between PCP and citalopram.

This hypothesis was not tested in the present investigation.

The present data add to the body of evidence which

indicates that functionally significant interactions occur

between glutamatergic and serotonergic systems (Agha-

janian and Marek, 2000; Carlsson et al., 2001; Winter

et al., 2000a, 2004). These interactions may provide

important clues as to the mechanisms of action of multiple

classes of hallucinogenic drugs as well to reconcile and to

integrate current hypotheses as to the etiology of psychotic

disorders. We suggest that drug-induced stimulus control, a

behavioral technique which over the past three decades has

contributed to our understanding of a variety of psycho-

active drugs may provide fresh insight into serotonergic/

glutamatergic interactions.
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